Members
Research Expertise:
Superstring Theory, Quantum Field Theory, Mathematical Physics
Jen-Chi Lee
Professor
Ph.D. in Physics, University of Pennsylvania, U.S.A
Education:
B.S. in Electrical Engineering, National Taiwan University, R.O.C.
Ph.D. in Physics, University of Pennsylvania, U.S.A.

Research Focus:
Superstring Theory
Quantum Field Theory
Mathematical Physics


Article:
http://psroc.phys.ntu.edu.tw/bimonth/download.php?d=1&cpid=205&did=6

NCTU String theory group:
http://web.it.nctu.edu.tw/~string/index.htm

Yau center research group:http://yaucenter.nctu.edu.tw/research.php?c1=5
Selected Publications:
1.

 
J.C. Lee and Y. Yang, “Review on High energy String Scattering Amplitudes and Symmetries of String Theory”, arXiv 1510.03297 (2015).(315 pages, invited review article for Symmetry)
 
2.

 
S.H. Lai, J.C. Lee and I.H. Tsai, Biquaternion and ADHM construction of non-compact SL(2,C) Yang-Mills instanton”, Annals of Phys.361 (2015)14.
 
3.

 
J.C. Lee and Y. Mitsuka, “Recurrence relations of Kummer functions and Regge string scattering amplitudes”, JHEP 1304,082 (2013).
 
4.

 
S.L. Ko, J.C. Lee, and Y.Yang, "Patterns of High energy Massive String Scatterings in the Regge regime", JHEP 06 (2009) 028.
 
5.

 
C. Chan, P.M. Ho, J.C. Lee, S. Teraguchi, Y. Yang, "High-energy zero-norm states and symmetries of string theory", Phys.Rev.Lett. 96 (2006) 171601.
 
6.

 
C. Chan, P.M. Ho, J.C. Lee, S. Teraguchi, Y. Yang, "Solving all 4-point correlation functions for bosonic open string theory in the high energy limit”, Nucl.Phys. B 725, 352 (2005).
 
7.

 
C. Chan and J.C. Lee, “Stringy symmetries and their high-energy limits”, Phys. Lett.B 611, 193 (2005).
 
8.

 
C. Chan and J.C. Lee, “Zero norm states and high-energy symmetries of string theory”, Nucl. Phys. B 690, 3 (2004).
 
9.

 
H.C.Kao, B. Rosenstein and J. C. Lee, “Systematic low temperature expansion in Ginzburg-Landau model”, Phys. Rev. B 61, 12352 (2000).
 
10.

 
J. C. Lee and X.G. Wen, “electron and quasipartical exponents of Haldane-Rezayi state in nonAbelian fractional quantum Hall theory”, Nucl. Phys. B 542, 647 (1999).